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SUMMARY 
Laminar-turbulent transition in boundary layers involves a cascade of weak and strong instabilities. In the 
model considered here the first instability occurs with respect to two-dimensional TS waves and causes 
streamwise, nearly periodic concentrations of vorticity. Linear stability analysis of this periodic flow leads to 
Floquet systems of equations. These systems support different classes of three-dimensional disturbances 
which may initiate different routes to transition. Numerical solutions by use of accurate spectral methods 
reveal the spectrum of eigenmodes, growth rates and disturbance velocities. The characteristics of this 
secondary instability are in good agreement with results of experiments and computer simulations of 
transition. Non-linear self-interaction of the rapidly growing three-dimensional disturbances can sustain or 
enhance the vital periodic accumulations of spanwise vorticity once their amplitude exceeds some threshold. 
This feedback loop is considered to be the key to the transition process. Owing to the broad-band nature of 
secondary instability, however, the prediction of transition in practice requires additional insight into the 
'natural' disturbance background. The sensitivity of the transition process to initial data in a broad band of 
frequencies and spanwise wave numbers poses new challenges for non-linear theories and numerical 
simulations. 
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INTRODUCTION 

The analysis, prediction and control of transition in boundary layers are of great practical 
interest. Tremendous efforts have been made with experimental, theoretical and numerical 
methods to gain insight into the intricate physics of the transition process and to  develop a 
rational theory for predicting transition. Although today's picture of the transition phenomenon 
is rather detailed, theoretical and computational methods have not yet progressed enough to be 
incorporated into design-type transition prediction. 

For the following we separate the process of transition into four stages: (a) receptivity, 
(b) primary instability, (c) secondary instability and (d) breakdown. 

Design-type transition prediction in a 'natural' environment, e.g. for a cruising airplane, 
routinely applies the e" criterion. This criterion rests on the integrated growth rates predicted by 
the linear stability theory (stage b) but ignores the initial data as well as the non-linear stages of 
the transition process. The n-factor is correlated with an empirical database of transition 
measurements.' Although this criterion has accrued many merits, it may mislead if used beyond 
the supporting database. This danger is of some concern for the design of advanced vehicles which 
are to  operate far outside this database. 
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The ‘natural’ initial data are a non-uniform spectral mixture of disturbances and are unknown. 
These initial data are established by the receptivity (stage a) of the boundary layer to sound, 
turbulence, wall vibrations, roughness, etc. The study of this subject has made some recent 
progress for special casesZ but is far from complete. In a similar way progress has been made in 
analysing the non-linear stages (c an d) for a simplified model of transition. This development will 
be described in the following. 

The experiments of Schubauer and Skramstad3 and Klebanoff et aL4 initiated a rather detailed 
phenomenological description of transition in the boundary layer along a flat plate which guided 
the theoretical efforts for over two decades. The earlier experiments3 identified the onset of 
transition with instability to essentially two-dimensional TS waves. Although stability theory 
predicts a weak preference for two-dimensional waves over oblique waves, the main reasons for 
the two-dimensionality are the control of the initial disturbances by a vibrating ribbon and the 
strong receptivity of the boundary layer to vibrations of the leading edge.’ Besides two- 
dimensionality of the initial disturbances, the ribbon imposes a preferred frequency and thus 
selects a single TS mode as the origin of transition. Point sources of disturbances lead to three- 
dimensional wave packets which can only be reproduced by accounting for a spectrum of TS 
waves and oblique waves with different frequencies and spamwise wavelengths6 

Klebanoff et aL4* ’ observed that the development of the TS wave follows the theoretical 
predictions only for sufficiently small amplitudes. At amplitudes of about 1 YO, three-dimensional- 
ity develops with a characteristic spanwise periodicity, which in the later experiments was 
supported by spanwise spacers underneath the ribbon. While the TS wave develops on a slow 
viscous timescale, three-dimensionality grows rapidly and leads within five TS wavelengths to the 
appearance of small-scale, high-frequency velocity fluctuations, so called ‘spikes’. Breakdown of 
the laminar flow occurs within one TS wavelength from the onset of spikes. 

The origin of three-dimensionality in the experiments has been the target of numerous theories 
of weakly non-linear wave interactions. In retrospect, only Craik’s model of resonant triads* 
turned out to be relevant, after a different type of subharmonic transition was discovered.’. l o  

Herbert and Morkovin’ ’ suggested that three-dimensional disturbances originate from para- 
metric excitation in the streamwise periodic flow created by the finite-amplitude TS wave. This 
new concept of secondary instability (stage c) has proved to be very fruitful for studies of various 
flows and different types of primary disturbances. In the following we briefly summarize the main 
results for the flat-piate boundary layer and complete the catalogue of three-dimensional 
disturbances by modes of combination resonance. We report on two ongoing studies to explain 
and predict the onset of breakdown. Finally we consider the impact of these results on theoretical 
and computational transition prediction in a ‘natural’ environment. 

LINEAR SECONDARY INSTABILITY 

The analysis of secondary instability in boundary layers starts with the observation that finite- 
amplitude TS waves produce a streamwise, nearly periodilc modulation of the basic flow. This 
modulated flow can be written in the form 

where vo = vo(y) represents the boundary layer flow, A the amplitude of the periodic modulation 
and v1 a TS wave for given parameters. We denote by x’, y, z the streamwise, normal and spanwise 
direction respectively, and by u, v,  w the associated velocity components. We normalize v1 such 
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that A is a direct measure for the maximum streamwise RMS fluctuation uh. All quantities 
are non-dimensional using the outer velocity U ,  and S,=(vL/U,)’’2 for reference, where L 
is the distance from the leading edge. Consequently the Reynolds number is 
Re=(U,L/v)’” and we use the non-dimensional frequency F =  lo6 ac,/Re. In a Galilean frame x 
moving with the TS phase velocity c,, the basic flow is independent of time and satisfies 

v2(x,y)=v2(x+Ax,y), x=x‘-c,t, (2) 
where ilx=2n/a is the wavelength of the TS wave. 

The choice of the basic flow (1) involves three approximations. The first assumption of a locally 
parallel flow vo is well established in the primary stability theory. The second approximation is 
the locally constant amplitude A of the TS wave. In other words the amplitude A is assumed to 
vary slowly in comparison with the amplitude B of three-dimensional disturbances. This 
assumption is justified once three-dimensional disturbances attain sufficient growth rate. The 
third approximation is the shape assumption, i.e. the neglect of the non-linear distortion of the 
velocity distribution v1 ( y )  at finite amplitude A.  This step is justified by the weak non-linear 
distortion of the u’ distribution even at amplitudes of 10% (Hama, personal communication). 

The coefficients in the linear stability equations for the basic flow (1) are independent of z and t 
and periodic in x. According to the theory of differential equations, especially Floquet theory, the 
equations support three-dimensional disturbances in the form 

where B = n/Lx. Owing to the spanwise homogeneity of the basic flow, we consider the spanwise 
wave number B= 2n/L, as real, whereas a = a,+ io, and the Floquet exponent y = yr  +iyi are in 
general complex. The Fourier coefficients S m ( y )  are governed by an infinite system of ordinary 
differential equations. Since the physical solution must be real, any complex solution v3 implies 
the existence of a complex conjugate solution v3. Consequently the system of equations can be 
written in a form with real coefficients. 

Only two of the four real quantities or, ai, yr, y,, are determined by the eigenvalue problem for 
v3. The other two quantities can and must be chosen. Similar ambiguity is associated with the 
Orr-Sommerfeld problem for TS waves, where the main distinction of different modes is made 
between temporally and spatially growing waves. l 2  For secondary modes temporal growth 
requires y, = 0. The temporal growth rate is given by a,, while oi can be interpreted as frequency 
shift with respect to the TS frequency. Modes with a, = O  travel synchronously with the modulated 
basic flow. Spatial growth in the laboratory frame requires or = y,~,. In this case y, is the spatial 
growth rate, while yi  is the shift in the streamwise wave number. 

Numerical aspects 

The derivation of the equations for the Fourier coefficients 8,  in equation (3) is straightforward 
but tedious. Simplifications of the equations arise for the temporal ‘tuned modes with y = ik 8, k 
integer. 

Primary and secondary stability problems are numerically solved using a spectral collocation 
method with Chebyshev polynomials. This method converts the ordinary differential equations 
and boundary conditions into systems of algebraic equations. We prefer the direct treatment of 
the boundary value problem over shooting methods since we maintain access to spectra of 
eigenvalues for temporally growing modes. The spectrum is extremely helpful for reliably 
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identifying the most relevant modes in different regions of the multi-dimensional parameter space 
and for untangling their analytical connections. 

For boundary layers we obtain a finite domain by an algebraic mapping Y=yo/ (y+yo)  that 
transforms y=O, GO into Y =  1, 0 respectively. The parameter yo controls the density of collo- 
cation points in the neighbourhood of the wall. Only odd Chebyshev polynomials are applied 
such that the boundary conditions for y-+m are autorrnatically satisfied. Typically J =  30 
collocation points are used, and yo  is chosen to place half of the points within the displacement 
thickness of the boundary layer. For every (real or complex) function 9, (y) in the series (3), 25 + 3 
(real or complex) unknowns have to be included in the homogeneous system of algebraic 
equations. In view of the size of the resulting systems, the truncation of the Fourier series is crucial 
for the numerical work. Detailed numerical studies' have shown that the Fourier series indeed 
converge rapidly, and the lowest truncation (see below) provides sufficient accuracy for any 
practical purpose. 

The numerical work for tuned modes can be further simplified by exploiting the fact that the 
physical solution is governed by systems of equations with real coefficients. The solution, 
however, is only real for real CT. The case of real o=cir is of particular interest, since synchroniz- 
ation between basic flow and disturbances offers an optimum chance for energy transfer. Since the 
amplitude A appears linear in the stability equations, real a(A)  enables an inverse eigenvalue 
search for A(a), i.e. the search for the value of the amplitude that produces a given amplification 
rate. Similar conclusions can be drawn for spatially growing modes. 

Concerning the choice between the temporal and spatial growth concept, the situation is 
analogous to the primary stability analysis. 'The temporal eigenvalue CT appears linear in the 
equations. Therefore spectra and single eigenvalues can be obtained by standard procedures of 
linear algebra. In the spatial formulation the eigenvalue y appears up to the fourth power. 
Although methods exist to obtain spectra in this case, the required computations are rather 
demanding. Therefore we have exploited the fact that neutral behaviour is independent of the 
growth concept. Parameter combinations for neutral behaviour, CT, = 0, have been identified using 
the temporal concept. Starting from these points, the principal eigenvalue can be traced using the 
spatial concept. The local procedure for spatial eigenvalues y rests on Newton iteration. 

Spatial versus temporal growth 

A comparison of the growth characteristics of subharmonic secondary modes for the Blasius 
boundary layer and for Falkner-Skan profiles using both spatial growth rates and transformed 
temporal rates14 verifies that the restriction of Gaster's transformation" to small growth rates 
does not apply to secondary instability. The wave propagation properties of secondary modes are 
quite different from those of primary modes. For subharmortic modes with ai =0, Ber t~ lo t t i '~  has 
shown that c, is indeed the leading term in the temporal-spatial transformation, with small 
corrections by dispersive terms. The surprisingly simple relation yr  z or/cr between spatial and 
temporal growth helps to understand the success of temporal computer simulations in reprodu- 
cing the characteristics of spatially developing transition. 

Fundamental and subharmonic modes 

While the choice of the growth concept removes the ambiguity in the Orr-Sommerfeld 
problem, we are still left with one quantity, yI, to choose far the modes of secondary instability. 
This freedom is directly related to the observed non-uniqueness of the three-dimensional stage of 
transition. For convenience we introduce E =  yi/8 and distinguish the three cases E =0, E =  1 and 
O <  1.3 < 1. Other values of E are redundant to within renumbering the Fourier coefficients. 
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For E = O  the disturbances (3) can be written in the form 

where the index f indicates fundamental (or primary) resonance in the Floquet system. Owing to 
the even multiples m, the streamwise wavelength of these modes coincides with the wavelength I ,  
of the basic flow. For the numerical work the lowest truncation of the series retains the Fourier 
components 9-  2, 9, and 9,. Fundamental modes are associated with the peak-valley splitting 
(K-type) route to transitionl6 and with the aligned pattern of A vortices in flow visualizations. A 
computer-generated pattern of particles released from a ’smoke wire’ in the critical layer’ is 
shown in Figure 1. 

Comparison of numerical results for growth rates and disturbance velocities with experiments4 
and computer simulations of transition’ verifies the theory’s capability of predicting the early 
stage of K-type transition. A similar comparison with more recent measurements’’ shows, 
however, that the accurate prediction of the streamwise development requires accounting for the 
non-parallel effect on the TS amplitude A. 

For the special case of E =  1 the modes (3) take the form 
A v, = e a l e ~ r x  iSz - e v,(x, y), is= 1 Qm(y)eimax. 

m odd 

Owing to the odd values of m, these modes are associated with subharmonic resonancezo* and 
with the staggered arrangementz2 of A vortices as shown in Figure 2. The lowest approximation 
for subharmonic modes includes only and 9, .  Numerical results are in excellent agreement 
with the measurements.’* 23 

Weak subharmonic instability may occur at arbitrarily small amplitudes owing to resonance of 
Craik’s triad.’ The conditions for this resonance, however, are strictly satisfied only at a single 
Reynolds number. For disturbances near resonance conditions to grow from the background to 
observable levels requires amplification over a range of Reynolds numbers. This requirement can 
only be satisfied at amplitudes large enough to cause instability in spite of some detuning in 
frequency and spanwise wave number. The flow visualization of Saric and Thomas” at TS 

I 
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Figure 1. Computer-generated ‘aligned’ pattern of particles convected in the three-dimensional flow that develops from 
secondary instability to a fundamental (peak-valley splitting) mode 
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Figure 2. 'Staggered pattern of particles convected in the three-dimensional flow that develops from secondary 
instability to a subharmonic mode 

amplitudes A < 0.3% appears as the 'best fit' to Craik-type resonance. Other components of the 
background are stable and do not affect the three-dimensional development. There is no 
guarantee, however, that the subharmonic instability in this case leads to transition. The pattern 
shown in Reference 22 can be reproduced with our results for linear secondary instability. 

For larger amplitudes, A > 0.5% say, the principal (most amplified) subharmonic and funda- 
mental modes are phase-locked with the TS wave, ai=:O. The growth rates are large in 
comparison with the maximum growth rate of TS waves. At otherwise fixed parameters the 
growth rate or (or y,) increases with increasing TS amplitude A as well as with increasing 
Reynolds number Re. Secondary instability occurs in a broad band of spanwise wave numbers B 
as shown in Figure 3. 

O r  

0.005 

Figure 3. Growth rate of three-dimensional disturbances as a function of the spanwise wave number fi  for Fz58.8, 
Re = 950 and A =0.014. Theory: (a) subharmonic, (b) peak-valley splitting. Computation:'' ( x ) subharmonic, 

(0) peak-valley splitting 
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The parameters in Figure 3 are chosen to match the experimental conditions of Klebanoff et 
aL4 Theoretical and computational results" are very similar and both show the stronger 
amplification of the subharmonic mode. The systematic quantitative differences can be attributed 
to approximations contained in both theoretical and computational work. The results predict 
that subharmonic instability should have prevailed in the experiment if the background ampli- 
tudes for fundamental and subharmonic modes were equal. The experiments were conducted in a 
similar region of the stability diagram as later studiesz3 on subharmonic resonance. The 
experimental arrangement, however, especially the spanwise spacers on the plate surface beneath 
the ribbon, enhanced spanwise periodic mean-flow variations and disturbances of the longitudi- 
nal vortex type that directly participate in the resonant mechanism of fundamental instability. 

Combination resonance 

From a mathematical point of view one expects that neighbouring modes, e.g. with E Z O ,  will 
exhibit growth rates in the neighbourhood of those for E=O.  In physical context the questions 
arise as to how the growth rate will vary and what the bandwidth (in E )  of this detuned resonance 
will be. Evidence for the relevance of such detuned modes with E Z  1 has been given in 
experimentsz3 which applied two frequencies, the TS frequency F ,  and F , = F l / 2 + A F ,  to the 
vibrating ribbon. Spectra of the velocity field show the response of the boundary layer with two 
peaks of nearly equal amplitude at the frequencies F ,  and F ,  = F J 2  - A F  such that F ,  + F ,  = F , .  
The bandwidth of this combination resonance is unexpectedly large. 

Detuned modes are contained in the general form (1) of secondary modes for O < J E /  < 1: 

These modes are distinguished from fundamental and subharmonic modes by the intrinsically 
complex system of equations for the functions S,(y). The occurrence of real eigenvalues is an 
unlikely incidence. The loss of synchronization with the basic flow most likely reduces the energy 
transfer and hence the growth rate as the detuning increases. Moreover, it is obvious that detuned 
modes lead to combination resonance. The construction of a physical (necessarily real) solution 
requires two complex conjugate modes with opposite detuning k E.  Consequently the real 
disturbance contains wave numbers md f yi and the sum of such wave number pairs matches the 
TS wave number. We denote the real combination of two detuned modes as 'combination mode'. 
Owing to the complex conjugate components, opposite detuning +yi  in wave number is conjoint 
with opposite detuning k AF in frequency. The combination modes represent the analytical link 
between fundamental and subharmonic modes; they are 'something in between'. 

Numerical results for the temporal growth of the principal detuned modez4 are consistent with 
the observations. Figure 4 shows the growth rate cr versus E at various amplitude levels. At very 
small amplitudes the fundamental instability is suppressed. A weak near-subharmonic instability 
persists for the parameters of this figure owing to a detuned triad 2 1  Craik's triad 
resonance was earlier thought to select a subharmonic mode with a characteristic spanwise 
wavelength. This property is watered down to a weak selectivity with respect to the spanwise 
wavelength at extremely small amplitudes, with little preference for the tuned subharmonic. As 
the amplitude increases, the growth rate increases and the instability encompasses the whole 
range from subharmonic, through detuned, to fundamental modes with comparable growth rates. 
The stronger subharmonic growth in comparison with fundamental growth has been found for 
numerous parameter combinations in the medium range of amplitudes and seems to be a generic 
result consistent with the experience from transition  simulation^.'^ The higher amplitudes, 
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Figure 4. Growth rates of detuned modes as a function of the detuning parameter E for various amplitudes of the TS 
wave. F =  124, Re =606, 8=0.1017, 8=0.2 

A > 1 %, are not commonly observed in the Blasius boundary layer. From theory and exper- 
iment" it is known, however, that the wave fetch plays an important role in the development of 
three-dimensionality from a low-disturbance background. For any mode of instability the 
amplitude is the result of an initial amplitude combined with the experienced growth. For 
secondary modes to be observable in a low-disturbance environment requires the conditions for 
growth to persist for a sufficiently long time or distance. In boundary layers with adverse pressure 
gradients the stronger TS growth over this distance may lead to the higher amplitude levels used 
in Figures 4 and 5. For Falkner-Skan profiles it has been found14 that the main effect of the 
pressure gradient on secondary instability is the stronger growth of the TS amplitude. At fixed 
amplitude A the pressure gradient and the associated modification of the basic flow have a rather 
modest effect on the secondary growth rate Q,. 

The dependency of the growth rate ( T ~  on the TS amplitude A for E = O ,  0.5, 1.0 is shown in 
Figure 5 in different form. Whereas the curves are very similar at larger amplitudes, the growth 
characteristics are different at small TS amplitudes. The threshold amplitudes for the onset of 
secondary instability are clearly displayed. Figure 5 also shows that or (A )  behaves differently 
from the predictions of weakly non-linear theories. According to models of resonant wave 
interaction,' this behaviour should be 0, - A,  while non-resonant models25 predict (T, - A Z .  

The amplitude growth curves for the TS wave and various associated modes of secondary 
instability are shown in Figure 6. Frequency F, spanwise wave number fl and the TS amplitude 
level are chosen to mach the experimental conditions of Kachanov and L e v c h e n k ~ . ~ ~  Within the 
linear framework of the theory, the initial amplitude of the three-dimensional disturbances is 
arbitrary. Comparison of the curves for different E gives some appreciation of the selectivity of the 
secondary instability mechanism. The subharmonic mode grows fastest, but modes in its 
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Figure 5. Growth rates of modes with E=O, 0.5 and 1.0 as a function of the TS amplitude. F =  124, Re=606, &=0.1017, 
p=0.2 

Figure 6. Streamwise variation of the TS amplitude A and the amplitude B of secondary modes with different detuning 
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neighbourhood reach considerable amplitude. The overall growth of the fundamental mode is 
rather modest. 

Whereas the TS wave decays downstream of branch I1 ( R e ~ 6 0 6 )  of the neutral curve, the 
three-dimensional modes continue to grow. Since nr grows with Re at  constant A, the maximum 
growth occurs downstream of branch 11.” After this point or decreases and the three-dimensional 
modes reach a maximum amplitude further downstream of branch I1 where or =O. Subsequently 
the three-dimensional modes decay, since the vitally important parametric excitation fades away. 
This general picture of the growth curve for secondary modes is consistent with observations at 
low TS amplitude levels in a low-disturbance environment.22* 2 3  It is clear, however, that this 
picture will require modification once the non-linear self- and cross-interaction of secondary 
modes and TS wave cannot be neglected, as will be discussed below. 

The visualization of a combination mode is shown in Figure 7 for E =  kO.4. For this strong 
detuning the streamwise changing arrangement-sometimes staggered, sometimes aligned-of 
the leading and trailing parts of particle lines is clearly discernible. At smaller detuning these 
changes require larger distance and may not be visible in (less accurate) laboratory visualizations. 
Still pictures taken at different times may show different arrangements of A vortices. However, the 
different modes can be clearly distinguished in spectra of the fluctuations. 

NON-LINEAR ASPECTS 

The Floquet analysis of linear secondary instability predicts the characteristics of the early three- 
dimensional stages of transition. The later stages involve a strong interaction of three-dimen- 
sional disturbances with the mean flow and the TS wave. The need to account for non-linear 
effects is obvious in view of the strong growth of secondary modes and is clearly shown by 
experimental and computational results. 

At low levels of the TS amplitude secondary disturbances may grow but ultimately decay with 
the TS wave as shown in Figure 6. At higher TS amplitude the stronger growth from the same 
initial level can lead to amplitudes of the three-dimensional modes large enough to affect the two- 
dimensional wave development and to prevent the decay of the two-dimensional component. In 
this way primary and secondary disturbances team up to generate a rapid evolution toward 
breakdown. 

iii 

Figure 7. Pattern of particles convected in the three-dimensional flow that develops from secondary instability to a 
combination mode with E =  kO.4. Note the alternating appearance of aligned and staggered arrangement of the structures 
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As a first step toward exploring the non-linear interaction between the components of the flow 
field, we have analysed the vorticity field and its relation to the energy transfer between mean flow 
vo, two-dimensional wave Av, and three-dimensional disturbances Bv,. The origin of secondary 
instability can be clearly tracked to the streamwise periodic concentrations of the spanwise 
vorticity created by the primary wave. The TS wave plays only a catalytic role in mediating the 
transfer of energy from the mean flow into three-dimensional disturbances.26 Secondary insta- 
bility reflects the dynamics of disbributed vortices in a shear flow. 

While similar results for the boundary layer are forthcoming, we use some key results from a 
study of plane Poiseuille ’* For sufficiently large TS amplitudes this study shows that the 
energy transfer is highly localized. For unstable TS waves the distribution of the power in the x, y 
plane shows shallow extrema near the critical layer, spreads far away from the wall and is periodic 
in x with wavelength LJ2. Averaging in the streamwise direction provides a sharp peak at the 
critical layer. Integration normal to the wall yields the small positive growth rate (multiplied by 
twice the energy of the TS wave). For fundamental and subharmonic secondary modes the picture 
changes drastically. The spanwise-averaged power has sharp oval peaks near the centre of the 
cat’s eyes, a clear indicator of the close association between vorticity distribution and secondary 
instability. A similar concentration of the streamwise-averaged power can be seen in the y, z plane 
normal to the mean flow direction. A more detailed scan reveals that the energy transfer into 
secondary modes is confined to shallow ellipsoids centred above the critical layer and at  the 
positions where the deflection of the distributed spanwise vortices is strongest. 

The observation of this highly localized energy transfer stimulates some speculation. The tie to 
the critical layer stems from creating the array of distributed vortices by a TS wave. Such an array 
created in another way at a different distance from the wall and convected with the local mean 
velocity will behave similarly to within changes in shear and viscous effects. Because of the broad- 
band nature of the secondary instability, spanwise periodicity of the three-dimensional dis- 
turbance will not be necessary. A single twist or kink may be enough to create a patch of A 
vortices. Small curvature, small variation in strength and finite spanwise extent of the vortices like 
the crests of a wave packet will barely cause dramatic changes. We therefore expect secondary 
instability to occur in the ‘natural’ situation, which is characterized by a spotty appearance of 
wave packets. The spanwise and streamwise periodicity is essential for the pattern formation and 
distinction of various modes. The streamwise wavelength determines the spanwise scale of the 
pattern. However, the pattern is not vital to transition. A single vortex convected with the local 
mean velocity and exposed to a single kink should reveal the elemental dynamics of the early 
stages of transition. Stuartz9 studied periodic disturbances of a single vortex and found scales 
similar to those in the experiments4 Further study of this phenomenon might reveal the secret of 
‘bypasses’ of the stages of instability in noisy environments. 

While the localized energy transfer permits abstraction from the doubly periodic model of 
secondary instability, the attempt to identify criteria for the onset of self-sustained growth of 
three-dimensional disturbances is closely tied to this model. 

At comparable amplitudes of two-dimensional and three-dimensional disturbances in the 
range of 1 %, the total energy transfer from the mean flow into the secondary disturbances exceeds 
the maximum viscous transfer into the TS wave by more than an order of magnitude. Typically 
only a third of this energy is dissipated, but not all the remainder is converted into growth of the 
three-dimensional component. About a tenth of the energy received is transferred into the two- 
dimensional field. This observation gives a first lead toward the feedback loop of self-sustained 
growth of three-dimensional disturbances. Our conclusions from the analysis of the global energy 
balance is illustrated in Figure 8. 

(1) For unstable TS waves the transfer of energy from the mean flow to the two-dimensional 
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Figure 8. Illustration of the energy transfer between mean flow, two-dimensional wave and three-dimensional dis- 
turbances. The numbers refer to the text 

wave is weak owing to the viscous mechanism; a considerable part of the energy gained is 
dissipated. (2) At sufficiently large amplitude A the two-dimensional wave leads to parametric 
excitation of three-dimensional modes. (3) This excitation causes strong energy transfer from the 
mean flow into the three-dimensional wave. One part of this energy is dissipated, a second part 
increases the amplitude B of the three-dimensional wave. Steps 2 and 3 agree with the results of 
transition simulationsz6 for the instability of large-amplitude periodic motions. (4) A third part of 
the energy gained is transferred into the two-dimensional wave. This transfer draws a minor 
amount off the three-dimensional growth but boosts the modest energy budget of the two- 
dimensional wave; the gain in growth rate is proportional to Bz/A. (5 )  Once B has attained a 
sufficiently large value, the energy of the two-dimensional wave can increase even if the TS 
mechanism fails to support this growth. This conclusion is consistent with computational 
results.' (6) Provided the gain in energy maintains the vital catalytic effect of the two-dimen- 
sional field, it enhances the growth of B. (7) Parametric excitation of three-dimensional dis- 
turbances by the two-dimensional field they create establishes a positive feedback loop and leads 
to self-sustained simultaneous growth of two-dimensional and three-dimensional waves. The 
existence of such a loop is supported by experience, experiment and computation. 

Threshold conditions for self-sustained growth 

The energy analysis involves approximations and neglects non-linear effects such as the 
distortion of the velocity profiles and the generation of harmonics. A more appropriate model of 
the non-linear interaction3' is based on the momentum equations and on perturbation expan- 
sions about the periodic basic flow of a given amplitude A*. The model consists of two modes of 
secondary instability, the first of which is two-dimensional. This mode describes the instability of 
the basic flow in a strictly two-dimensional framework. The second mode is either a subharmonic 
or fundamental mode of three-dimensional instability. Similarly to the energy analysis, the 
expansion yields up to second order the amplitude equations 

=boB+blAIB, - = U , A I + U ~ A I ~  +a2B2, - 
dB d a  

dt dt (7) 
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where A = A - A *  and a, and b, are the linear growth rates of the secondary modes. The 
parametric effect of A on the three-dimensional growth rate is represented by b, > O .  The unusual 
self-interaction of the two-dimensional mode at second order is caused by the periodic character 
of the basic flow, and a, is of minor importance. Of prime interest is the coefficient a2 which 
incorporates the effect of the three-dimensional disturbance on the two-dimensional mode. In 
accordance with the energy analysis, this effect is proportional to B2, and a2 is expected to be 
positive and large in comparison with lull whenever A* is sufficiently large. For a,A+aA2 > 0 the 
two-dimensional mode will always grow and this growth will ‘be enhanced if a,>O. For 
a , ~ + a , ~ 2 < 0  the two-dimensional wave will grow only if B exceeds the threshold value B,, 
where B: = -(a,A +u,A^~)/u, .  The numerical results of the rather intricate analysis are in the final 
stages of verification. 

DISCUSSION 

The amplification of initial disturbances in a broad band of frequencies and spanwise wave 
numbers shows that our present picture of transition is strongly biased by the few experimental 
descriptions of the phenomena. The model of ribbon-induced transition and, to an even greater 
extent, the temporal transition simulations in a spatially periodic domain provide insight into 
highly idealized situations. Although numerical simulations could predict the onset of breakdown 
without resolving the small scales of the spike stage, the incorporation of spanwise and 
streamwise selection mechanisms pioneered by Spalart and Yang” exceeds current computer 
capacity. Whereas the difference between temporal and spatial growth characteristics appears less 
dramatic than thought earlier, the incorporation of realistic boundary layers into the temporal 
simulations is difficult. The specification of transparent downstream boundary conditions for 
spatial simulations, on the other hand, is still an unsolved problem. For more theoretical studies 
we can currently identify three key areas of future research. The first area aims at increasing 
insight into the spectral properties of noise in ‘natural’ environments, uncontrolled but biased test 
facilities and controlled experiments. Deeper understanding of receptivity is an integral part of 
this issue. The second area is the incorporation of streamwise variations of boundary layer profile, 
primary instability modes and secondary instability modes into the analysis. Fortunately the 
effect of non-linearity is negligible for most of the early stages. Finally the tools have to be 
developed to deal with the non-linear evolution of single modes and with the wealth of non-linear 
wave interactions in the late stages of transition. 
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